
Unlocking Network Visibility
through

Programmable Data Planes

Gerrit Avenant
April 2025

Introduction

● Electronic/Computer Engineer at Dendrite Cyber

● Specialize in customised packet processing solutions

● Focus areas:
○ Improved visibility for high speed networks

○ Network traffic health metrics

What We’ll Cover

● Introduction to Programmable Data Planes
○ Overview of Hardware

○ Software Libraries & Languages

● Network Monitoring Use Cases
○ MPLS Decapsulation

○ Packet Deduplication

Terminology

Data Plane
Forward packets based on rules.

High speed. Low latency. No buffering

Control Plane
Decision making and traffic control

Low speed. High latency. Buffering

Configuration,
Forwarding Rules

Telemetry,
Small Subset of traffic

Packet Ingress Packet Egress

Fixed Function Network Devices

● Standard network components
○ NICs, Switches, Routers, Firewalls, Packet Brokers

● Hardware Based Processing (ASICs)
● Cost Effective

● Limitations:
○ Vendor-defined features
○ Not flexible in terms of packet processing
○ Limited SDN integration
○ No support for new/custom protocols

Programmable Dataplane Technologies

Driven by Modern Data Center Architectures:

● East-West traffic increased
● Smart data movement required

Programmable hardware allows:

● Custom hardware offloading
● Multi-purpose use of device

Hardware: Network Accelerator Cards

● PCIe-based cards

● Offload CPU Intensive tasks to SmartNIC
○ Header Parsing,
○ Encryption/Decryption
○ Storage Offload

arXiv:2405.09499v1

● Intel Tofino (EOL)
● Fully programmable packet processing pipeline (P4 language)

Hardware: Programmable Switches

● 3.2 Tb/s Tofino Programmable Pipeline (Data Plane)
● 4-core Intel® Pentium® D-1517 (Control Plane)
● 32x 100Gbps QSFP Ports

Software: P4 Language

● “Programming Protocol-independent Packet Processors”
● Targets - Programmable Switches, SmartNICs, XDP, eBPF

Software: DPDK (Dataplane Development Kit)

● User Space C++ Library
● Bypass kernel network stack
● Optimised for standard NICs

● Linux Kernel
○ ~1Gbps per CPU core

● DPDK:
○ ~10Gbps per CPU core

Network Monitoring Applications

● Growing demand for real-time analytics
● Most monitoring tools are software-based and will have

performance limits

Network Monitoring Applications

● Growing demand for real-time analytics
● Most monitoring tools are software-based and will have

performance limits

● “Do what you can in hardware, do what you must in software.”

Case Study: MPLS Decapsulation (1)

● Goal: Remove MPLS headers for downstream compatibility
● Challenge: MPLS header doesn’t indicate next proto/ethertype!!!

Ethernet MPLS IPv6

Ethertype = IPv6

Ethernet IPv6

Decapsulate

Most solutions use “first nibble hack”:
First nibble after MPLS:

4: IPv4 header
6: IPv6 header
0: PCWC
Rest: Ethernet

It works most of the time….

Case Study: MPLS Decapsulation (2)

Ethernet IPv4/IPv6 MPLS …

● Header combinations:

Ethernet MPLS MPLS ……

Ethernet MPLS PWCW IPv4/IPv6/Ethernet …

Ethernet MPLS IPv4/IPv6/Ethernet …

● Other Challenges:
○ Nested MPLS headers
○ Multiple Labels (7+)
○ Fragmented MPLS-over-IPv4

● Solution:
○ Use Programmable Hardware
○ Decapsulate flows in data plane
○ Learn decapsulation rules through speculative parsing in control plane

Case Study: MPLS Decapsulation (3)

Parse
Header

MPLS
?

Forward

Lookup MPLS
Decapsulation rule Rule

Found
?

Mirror to control
plane

Decapsulate MPLS
headerIngress

Port

Egress
Port

Mirror
Port

40k
entries

no

yes no

yes

Data Plane

Case Study: MPLS Decapsulation (4)

Speculative parsing in Control Plane

● See what header structure fits
● Add dataplane rule if checksum

validation succeeds

Parse MPLS

Speculative
Parse

Parse PWCW Parse Ethernet

Parse IPv6 Parse IPv4

Parse UDP Parse SCTP Parse TCP

Verify Checksum
IPv4/UDP/TCP/SCTP

Add Rule to
Dataplane

success

Control Plane

Case Study: Deduplication (1)

● Challenge: Traffic from several points in the network is sent to
monitoring tools

● Goal: Reduce processing load on downstream tools through
deduplication

● Many products perform deduplication in software on a CPU
● Software-based solutions are resource-intensive and introduce

latency

Case Study: Deduplication (2)

Eth

622a37e4964eb3e1693add76e77653ef

268429625d86f29ac15ccd6b8b8c77c5

952a52f9b0acbbc82e832c3dd749fa54

e19b881f9c9228ac78f3fff69ce53e99

a87cf53f40696787017fdb0fa8a074bf

Parse Packet Headers Calculate Hash over Packet Fields Store in Table

Packet ID matched?
Packet within in time window?

YES, DROP!!

IPv4
IPv6

TCP

UDP

SCTP
Index

Collision

0

1

2

3

4

5

6

Hash
Calculation

Case Study: Deduplication (3)

● Solution:
○ Use Programmable Hardware:

○ Use Programmable Parser to parse headers at line rate

○ Hash Calculation over several fields to uniquely identify packet

○ Use Registers for Hash Table lookups and Timestamp Comparison

○ Registers (Memory) physical limitation to how many packets can be stored at once

● Results:

Traffic Packet Size Window Traffic Dropped

1 x 100Gbps 300 1ms 100%

5 x 100Gbps 300 1ms 99.5%

Overview

Benefits of Programmable Devices for Monitoring Use Cases:

● Reduces CPU overhead by offloading intensive packet processing
tasks.

● Enables flexible network packet processing and customised
solutions to challenges

● Improves efficiency of network monitoring at high network rates.

