Unlocking Network Visibility
through
Programmable Data Planes

Gerrit Avenant
April 2025

Dendrite

CCCCC

Introduction

e Electronic/Computer Engineer at Dendrite Cyber
e Specialize in customised packet processing solutions

e Focus areas:

o Improved visibility for high speed networks

o Network traffic health metrics

What We'll Cover

« Introduction to Programmable Data Planes
o Overview of Hardware
o Software Libraries & Languages

o Network Monitoring Use Cases

o MPLS Decapsulation

o Packet Deduplication

Terminology

Control Plane
Decision making and traffic control
Low speed. High latency. Buffering

Configuration, Telemetry,
Forwarding Rules Small Subset of traffic
Data Plane W
Forward packets based on rules.

P
Packet Ingress High speed. Low latency. No buffering J Packet Egress

Fixed Function Network Devices

e Standard network components

o NICs, Switches, Routers, Firewalls, Packet Brokers
e Hardware Based Processing (ASICs)
e Cost Effective

e Limitations:

o Vendor-defined features
o Not flexible in terms of packet processing
o Limited SDN integration

o No support for new/custom protocols

Programmable Dataplane Technologies

Driven by Modern Data Center Architectures:

e East-West traffic increased
e Smart data movement required

Programmable hardware allows:

e Custom hardware offloading
e Multi-purpose use of device

Hardware: Network Accelerator Cards

e PCle-based cards

Traffic

=]

Packet buffer

ITTTT]

RX Ethernet
and serial

e
-

X 10

DMA engine i

PCle

(a) Traditional NIC

Traffic

Packet buffer

TTTTT]

!

RX

and

™

Ethernet

serial IO [

Basic
accelerators

TOE

EH L

| Checksum

Others

|

==

DMA engine

PCle

(b) Offload NIC

Traffic

arXiv:2405.09499v1
Packet buffer Execution
T engines
CPU cores
Traffic
— s Magz:ger ~>[” Prog. pipeline
<+« TX
nicswiteh [|17 | [B0 BB H
DMA engine
(BESERARERRNE]
PCle

(c) SmartNIC

e Offload CPU Intensive tasks to SmartNIC

Header Parsing,
Encryption/Decryption
Storage Offload

©)

©)

©)

Hardware: Programmable Switches

e Intel Tofino (EOL)
e Fully programmable packet processing pipeline (P4 language)

R L e e oS e e e e b e s e
oo

. i
R : ¥ : : : : -
el H T H [H [H_ [H_ __ H [H [HH ~
: : ; ; ; —— il i

- - - $

- - - $

e 3.2 Th/s Tofino Programmable Pipeline (Data Plane)
e 4-core Intel® Pentium® D-1517 (Control Plane)
e 32x 100Gbps QSFP Ports

Software: P4 Language

e “Programming Protocol-independent Packet Processors”
e Targets - Programmable Switches, SmartNICs, XDP, eBPF

Protocol Independent Switch Architecture (PISA)

Control Plane
Table Configuration

v v v

i I
Data Plane

Parser Match-Action Pipeline Deparser .
Packet 5
Ingress Header (Stage 11 (Stage 2| (Stage N] gress

—» Extraction | | Match | | Match | Match i Packet >
Recomposition
Protoc_:c?l Action Action Action
Recognition

Software: DPDK (Dataplane Development Kit)

DPDK vs Normal Linux Network Stack
Normal Linux Stack DPDK ° Usel’ Space C++ Library

User Space Applications User Space Applications

[Aepisstonioge] [poptoatonLogie | e Bypass kernel network stack
e Custom Protocol Stack . .

[Scorsp “‘) | | e Optimised for standard NICs
Kernel Space

Socket Layer

[DPDK Libraries (librte_*)]

Ado9j ejeq

| Poll Mode Drivers (PMD) |

TCP/IP Stack |P°"S

Minimal Kernel Interaction

|)
| J
{ Networl;:::\::i:terface } UIO/VFIO Driver () Li NUX Ke rne I
* o ~1Gbps per CPU core

NIC Hardware NIC Hardware

RX/TX Ring Buffers RX/TX Ring Buffers Y D P D K

DMA, Interrupts DMA

[Interrupt-driven, Context SwitchingJ [Poll-mode, Zero-copy, Hugepages] O ~ 1 O G b pS pe r C P U CO re

sydnuiayu|

Network Monitoring Applications

e Growing demand for real-time analytics
e Most monitoring tools are software-based and will have
performance limits

Network Monitoring Applications

e Growing demand for real-time analytics
e Most monitoring tools are software-based and will have
performance limits

D — P []

e i

e “Do what you can in hardware, do what you must in software.”

Case Study: MPLS Decapsulation (1)

e Goal: Remove MPLS headers for downstream compatibility
e Challenge: MPLS header doesn’t indicate next proto/ethertype!!!

e i o Most solutions use “first nibble hack™:
+ Decapsulate First nibble after MPLS:
4: IPv4 header
Ethernet IPv6 6: IPv6 header
* 0: PCWC
Ethertype = IPv6 Rest: Ethernet

It works most of the time....

Case Study: MPLS Decapsulation (2)

e Header combinations:

Ethernet MPLS IPv4/IPv6/Ethernet

Ethernet MPLS PWCW IPv4/IPv6/Ethernet
Ethernet IPv4/IPv6 MPLS

Ethernet MPLS MPLS

e Other Challenges:
o Nested MPLS headers
o Multiple Labels (7+)
o Fragmented MPLS-over-IPv4

Case Study: MPLS Decapsulation (3)

e Solution:

o Use Programmable Hardware
o Decapsulate flows in data plane
o Learn decapsulation rules through speculative parsing in control plane
Data Plane
40k_ Mirror
ves entries no Mirror to control Port
Lookup MPLS plane \{)
Decapsulation rule Rule
C) Parse ® Found
Header ?
Decapsulate MPLS
Ingress yes header
Port no Forward I
Egress
Port

Case Study: MPLS Decapsulation (4)

Speculative parsing in Control Plane

e See what header structure fits
e Add dataplane rule if checksum
validation succeeds

Control Plane

Parse MPLS

Speculative
Parse

| Parse PWCW | | Parse Ethernet |

Parse IPv4

Parse IPv6

| Parse UDP || Parse SCTP || ParseTCP/ |

\V/

Verify Checksum
IPv4/UDP/TCP/SCTP

| success

Add Rule to
Dataplane

Case Study: Deduplication (1)

e Challenge: Traffic from several points in the network is sent to
monitoring tools

e Goal: Reduce processing load on downstream tools through
deduplication

e Many products perform deduplication in software on a CPU
e Software-based solutions are resource-intensive and introduce
latency

Case Study: Deduplication (2)

Parse Packet Headers

<V,

IPv4 Header

Version | IHL | Type of Service

Total Length

Identification

Flags | Fragment Offset

Time to Live | Protocol

Header Checksum

Calculate Hash over Packet Fields

Store in Table

622a37e4964eb3e1693add76e77653ef

268429625d86f29ac15ccd6b8b8c77¢5

952a52f9b0acbbc82e832¢3dd749fa54

€19b881f9c9228ac78f3fff69ce53e99

Source IP Address

Destination IP Address

Hash
Calculation

ojla|lbh|lw|INMN|=|O

a87cf53f40696787017fdb0fa8a074bf

TCP Header

Source Port
Destination Port
Sequence Number
Acknowledgment Number
Data Offset | Reserved | Flags
Window Size
Checksum

Options | Padding

Index
Collision

Packet ID matched?
Packet within in time window?

YES, DROP!!

Case Study: Deduplication (3)

e Solution:

o Use Programmable Hardware:

o Use Programmable Parser to parse headers at line rate

o Hash Calculation over several fields to uniquely identify packet

o Use Registers for Hash Table lookups and Timestamp Comparison

o Registers (Memory) physical limitation to how many packets can be stored at once

e Results:
Traffic Packet Size Window Traffic Dropped
1 x 100Gbps 300 1ms 100%

5 x 100Gbps 300 1ms 99.5%

Overview

Benefits of Programmable Devices for Monitoring Use Cases:

e Reduces CPU overhead by offloading intensive packet processing

tasks.
e Enables flexible network packet processing and customised

solutions to challenges
e Improves efficiency of network monitoring at high network rates.

